Работа с топографией в программном комплексе ZOND автор В. Молдаков

Весьма важным этапом обработки геофизических данных является корректное введение рельефа. Необходимо отчетливо понимать, что Вы вводите и что должны получить. Значения рельефа, как правило, можно задать длинами вдоль косы L1, L2, ... и высотными отметками h4, h3, ... (Рис. 1)

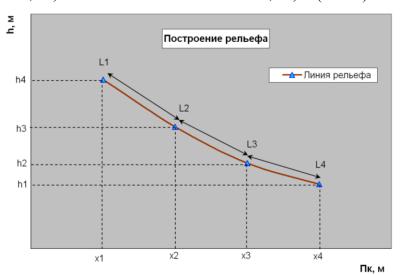


Рис. 1 Пример построения рельефа

В программе ZOND рельеф, возможно, ввести тремя способами, на разных этапах обработки.

1. Введение рельефа в режиме обработки данных

Ввести рельеф в режиме обработки данных можно через опцию «включить топографию» в закладке «Файл». Открываем заранее созданный текстовый файл с двумя колонками, где в первой, длины вдоль линии косы* (L1, L2,...), а во второй соответствующие им высотные отметки (h4, h3, ...). Далее в открывшемся файле присваиваем колонкам статус X и Alt (Puc. 2).

Файл Настройки Инструмент	*						*	٨	ሕ	ሕ
	#Ind	oldX	Ind	None 🔻	None		#Ind	#Ind oldX	#Ind oldX Ind	#Ind oldX Ind X
Открыть SEG-Y/Проект	1	-2	1	None	137.00		1	1 -2	1 -2 1	1 -2 1 0
Добавить в проект	2	0	2	oldX newX	135.04		2	2 0	2 0 2	2 0 2 10
Сохранить проект	3	2	3	X Alt	133.36		3	3 2	3 2 3	3 2 3 20
Информация о проекте	4	4	4	#Ind	133.59		4	4 4	4 4 4	4 4 4 30
Информация о проекте 5 6 5 Ind 135.68 5 Закрыть проект 6 8 6 50 138.76 6	5 6	5 6 5	5 6 5 40							
	6	8	6	50	138.76		6	6 8	6 8 6	6 8 6 50
	7	10	7	60	140.40		7	7 10	7 10 7	7 10 7 60
Предосмотр печати	8	12	8	70	142.83		8	8 12	8 12 8	8 12 8 70
Включить топографию	9	14	9	80	144.10		9	9 14	9 14 9	9 14 9 80
	10	16	10	90	144.45		10	10 16	10 16 10	10 16 10 90
Smooth topography	11	18	11	100	141.29		11	11 18	11 18 11	11 18 11 100
Запустить модуль MASW	12	20	12	110	137.09		12	12 20	12 20 12	12 20 12 110
•	13	22	13	120	132.62		13	13 22	13 22 13	13 22 13 120
Run MASW for groups	14	24.0	14	124	130.87		14	14 24.0	14 24.0 14	14 24.0 14 124

Рис. 2 Пример задания рельефа в режиме обработки данных.

* - Значения вдоль линии косы (L_i) могут быть не регулярные, но должны быть кратными шагу между датчиками.

После ввода рельефа во многовкладочной секции, во вкладке «коса» будет отображаться положение датчиков косы с учетом рельефа.

Далее при переходе в режим инверсии в созданном файле *.st введенные значения рельефа пересчитываются в проекции и высотные отметки для каждого датчика (x_i, h_i) .

2. Введение рельефа в режиме инверсии

В режиме инверсии в закладке «Инпорт/Экспорт» выбираем «Іmport topography» (Рис. 3). Открываем заранее созданный текстовый файл с двумя колонками, где в первой, длины вдоль линии косы (L1, L2,...), а во второй соответствующие им высотные отметки (h4, h3, ...). Далее, как и в первом случае присваиваем им статусы.

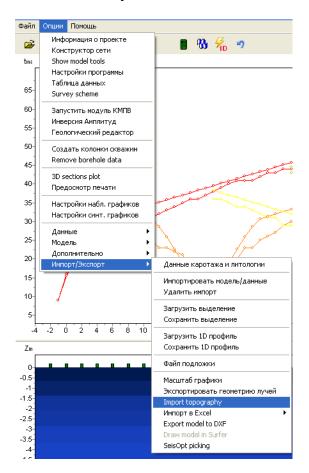


Рис. 3 Введение данных рельефа в режиме инверсии

Введенные значения рельефа в файле *.st пересчитываются в проекции и высотные отметки для каждого датчика (x_i, h_j) .

3. Введение рельефа в файл *.st

В зависимости от того, какие данные рельефа имеются $(x_i, h_j$ или $L_i, h_{j...})$ нужно воспользоваться определенным ключом топографии (topo, topo $^$, topo * ...).

Вставить данные рельефа можно, открыв файл *.st через текстовый редактор (блокнот), и после наблюденных данных необходимо набрать слово topo с подходящим ключом. Далее в два столбика перечислить соответствующие координаты.

- A) Если имеются данные рельефа, как и в первых двух случаях, в виде длин вдоль косы и высотных отметок (L_i , h_i), то следует воспользоваться ключом topo[^].
- \overline{b} Если имеются данные рельефа в виде горизонтальных проекций (x_i , h_j), то данные топографии необходимо вводить без ключей, просто со словом topo. Этот способ является не

совсем корректным, и применим лишь для горизонтальных форм рельефа с незначительными превышениями вдоль профиля.

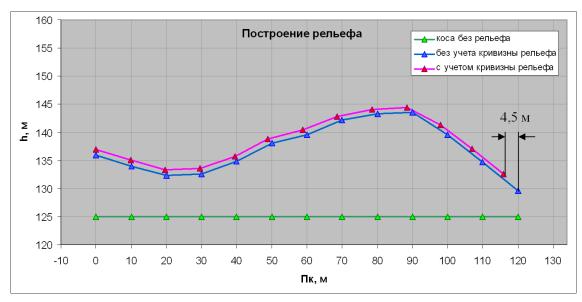


Рис. 4 Пример отображения рельефа с учетом кривизны дневной поверхности и без.

На рисунке 4 приведен пример отображения кривых рельефа, где синим цветом отображается кривая введенная данным способом. Красным цветом показана кривая характеризующая реальное положение датчиков. Таким образом, при крутых формах рельефа или в местах с пересеченной местностью изменение проекции (Δx) за счет кривизны дневной поверхности данным способом не учитывается.

B) Если имеются данные рельефа в виде проекций (x_i, h_j) , с не регулярным шагом, полученные снятием рельефа с топографического плана или съемкой профиля рельефа топографами, где коса привязана одной опорной точкой к рельефу (Рис. 5). В данном случае удобнее всего было бы воспользоваться ключом topo#.

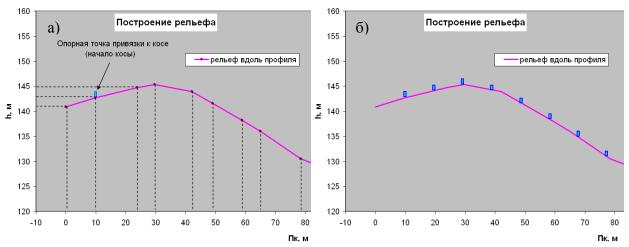


Рис. 5 Пример введения рельефа с ключом topo#. a) отображение рельефа с не регулярной сеткой и опорной точкой привязки косы. б) расположение косы на рельефе относительно опорной точки.

Задание рельефа таким способом начинается с задания привязки косы к рельефу.

0 140 0 0 155 0 0 6.1744 1 353 topo# 0 0 !start position of array 0.00 220.00 10.00 225.00

- последняя строка наблюденных данных
- ключ рельефа
- координаты привязки косы к рельефу
- координаты рельефа (x_i, h_i)

Координаты привязки косы к рельефу задаются следующим образом: первое число означает привязку к электроду в длинах, второе число привязка к рельефу в проекциях. Координаты со значениями 0 0 !start position of array - означают привязку первого датчика к первой отметки рельефа.

Таким образом, задавая разные координаты привязки, коса может смещаться (скользить) вдоль рельефа «змейкой». Например, рисунок 6:

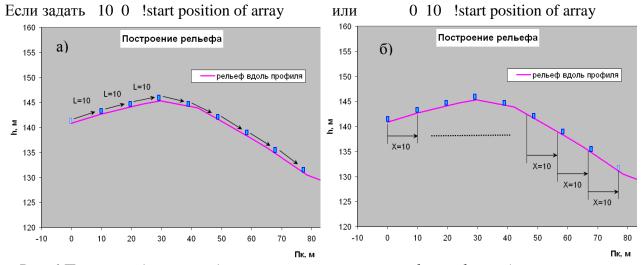


Рис. 6 Пример введения координат привязки косы к рельефу профиля. а) коса смещается на расстояние 10 м вдоль косы вправо относительно первой точки рельефа, б) рельеф смещается вправо на расстояние 10 м вдоль проекции относительно первой точки рельефа.